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Abstract

In the present paper, a thorough analytical and numerical investigation is carried out to examine the double-diffusive convective insta-
bility within a horizontal porous layer heated and salted from below. A situation is considered where a lateral perturbing heat flux
applied to the system is balanced by the horizontally induced Soret mass flux. The parameters governing this problem are the thermal
Rayleigh number, RT; the Lewis Number, Le; the buoyancy ratio, N; the Soret parameter, M; the ratio of the horizontal to vertical heat
flux, a; and the aspect ratio, Ar; of the porous layer. The present investigation is focused on the situation where MN ¼ 1, which describes
an equilibrium state between the induced Soret mass flux and the imposed heat flux. For this situation, a rest state solution is possible.
The analytical solution, derived on the basis of the parallel flow approximation, is validated numerically using a finite difference method
by solving the full governing equations. In the M*–Le plane ðM� ¼ 1=MÞ, five distinct regions, describing different flow behaviors, are
delineated and their location depends on the lateral heat flux parameter a. It is also demonstrated that supercritical and/or subcritical
bifurcations are possible for specific ranges of M* and Le. The effect of the lateral heating and the Soret parameter on the critical Ray-
leigh number, corresponding to the onset of parallel flow convection, is examined. The parameter a affects the flow and the heat transfer
considerably, but its effect on the mass transfer is negligible.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of thermo-diffusion, also known as the
Soret effect, has received growing attention as it is encoun-
tered in nature and in many industrial applications includ-
ing geophysics, oil reservoirs, multi-component melts and
storage of nuclear waste. Theoretical studies on the Soret
effect have shown that this phenomenon may engender
specific behaviors in convective motions such as multiple
steady/oscillatory states, subcritical flows, hysteresis behav-
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iors, Hopf bifurcations and reversal gradients of concen-
tration. A literature review showed that theoretical and
experimental efforts have been devoted to understand these
phenomena and also to the measurement of the Soret coef-
ficient [1], which is usually unknown and depends on vari-
ous flow mixture properties.

Rosanne et al. [2] experimentally studied thermo-diffu-
sion in a solution of sodium chloride contained in compact
clay. They concluded that the mass transfer was enhanced
by the thermal diffusion. Mansour et al. [3] investigated the
Soret effect on double-diffusive multiple solutions in a
square porous cavity subject to temperature and concentra-
tion cross-gradients. Depending on the value and sign of
the parameter characterizing the Soret effect, the solute
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Nomenclature

Ar aspect ratio ð¼ L0=H 0Þ
CCF counter-clockwise flow
CF clockwise flow
D mass diffusivity
D* thermo-diffusion coefficient
g gravitational acceleration
H0 height of the porous cavity
j0 constant mass flux per unit area
K permeability of the porous medium
L0 length of the porous cavity
Le Lewis number ðLe ¼ a=DÞ
M parameter characterizing the Soret effect

ðM ¼ D�S00DT 0=DDS0Þ
N buoyancy ratio ðN ¼ bSDS0=bTDT 0Þ
Nu Nusselt number
q0 constant heat flux per unit area
RT thermal Darcy–Rayleigh number ðRT ¼

gbTKq0H 02=ðkamÞÞ
RTC critical thermal Rayleigh number
S dimensionless solute concentration ½S ¼

ðS0 � S00Þ=DS0�
S00 dimensional solute concentration at the cavity

center
DS0 concentration solute difference ðDS0 ¼ j0H 0=DÞ
Sh Sherwood number
T dimensionless temperature ðT ¼ ðT 0 � T 00Þ=DT 0Þ
t dimensionless time ðt ¼ t0a=rH 02Þ

T 00 dimensional temperature at the cavity center
DT 0 temperature difference ðDT 0 ¼ q0H 0=kÞ
u dimensionless horizontal velocity ðu ¼ u0H 0=aÞ
v dimensionless vertical velocity ðv ¼ v0H 0=aÞ
x dimensionless distance along the x-axis

ðx ¼ x0=H 0Þ
y dimensionless distance along the y-axis

ðy ¼ y0=H 0Þ

Greek symbols
a thermal diffusivity ða ¼ k=ðqCÞfÞ
bS solutal expansion coefficient
bT thermal expansion coefficient
e normalized porosity ðe ¼ e0=rÞ
e0 porosity of the porous medium
k thermal conductivity of the saturated porous

medium
m kinematic viscosity of the fluid
q density of the fluid mixture
ðqcÞf heat capacity of fluid mixture
ðqcÞp heat capacity of the saturated porous medium
r heat capacity ratio ðr ¼ ðqcÞp=ðqcÞfÞÞ
W dimensionless stream function ðW ¼ W0=aÞ

Superscript
0 dimensional variables
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could be transferred from the least to the most salted wall,
leading to negative values of the Sherwood number. The
choice of this parameter was found to affect the presence
of the multicellular flow in the enclosure. The problem of
thermo-diffusion in an initially homogeneous mixture sub-
mitted to a horizontal thermal gradient was studied numer-
ically and experimentally by Benano et al. [4]. Their
numerical results showed that multiple convection-roll flow
patterns could develop in the presence of counter-acting
thermal and solutal buoyancy forces, depending on the
Soret number value. The discrepancy observed between
the numerical and experimental results was attributed to
the dispersion effect. Thermosolutal natural convection
induced in a binary mixture and confined in a slightly
inclined tall enclosure was investigated analytically and
numerically by Ouriemi et al. [5] in the presence and
absence of the Soret effect. The cavity was heated from
below with a constant heat flux and its long side walls were
impermeable and adiabatic. The existence of multiple
steady states was demonstrated for sufficiently small incli-
nations around the vertical plane. The Soret effect on con-
vection in a horizontal porous cavity submitted to cross
gradients of temperature and concentration was considered
by Bennacer et al. [6]. Their results showed that when the
vertical concentration gradient was stabilizing, multiple
steady-state solutions were possible over a range of buoy-
ancy ratios that depended strongly on the Soret parameter.
Among the problems studied recently in the thermo-diffu-
sion field were those related to the Soret effect on the onset
of convection flows in rectangular porous enclosures. The
investigation conducted by Marcoux et al. [7] was devoted
to study the onset of thermogravitational diffusion within a
vertical porous cavity subject to horizontal thermal gradi-
ents in the case of opposing and equal thermal and solutal
buoyancy forces. A linear stability analysis of the purely
diffusive state was performed and the thresholds of instabil-
ity were computed for various enclosure aspect ratios.
Their numerical results showed different flow structures
and the existence of time-periodic oscillatory solutions.
The onset of natural convection within a vertical porous
layer subject to uniform heat fluxes along the vertical walls
was also studied analytically and numerically by Joly et al.
[8] using the Brinkman–extended Darcy model. The Soret
effect in this problem was such that the solutal and thermal
buoyancy forces had opposing effects and were of the same
order of magnitude. Both supercritical and subcritical
bifurcations were possible in the system. Rehberg and
Ahlers [9] studied experimentally bifurcations phenomena
in a horizontal porous layer of a normal-fluid 3He–4He
mixture heated from below. Their study showed that the
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nature of bifurcation from the rest state depended on the
separation ratio and hysteresis phenomena were possible
for this problem. The effect of the gravity gradient on the
onset of thermosolutal convection due to thermal diffusion
in a fluid saturated isotropic porous layer with horizontal
boundaries maintained at constant but different tempera-
tures and concentrations was studied by Alex and Patil
[10]. The authors showed that the Soret parameter affected
the pattern of convection only when its magnitude was
large in the presence and absence of the gravity field varia-
tions. The onset of Soret-driven convection in an infinite
porous layer saturated by a binary fluid with impermeable
horizontal walls maintained at different and uniform tem-
peratures was investigated by Sovran et al. [11]. The criteria
for the onset of motion via a stationary and Hopf bifurca-
tions were determined using a linear stability analysis. They
showed that the bifurcation from the rest state depended,
among other factors, on the separation ratio. Bénard
convection in a porous layer filled with a binary liquid
exhibiting a nonlinear density–temperature relation was
investigated by Karcher and Müller [12] in the presence
of the Soret effect. They found that non-Boussinesq prop-
erties have a destabilizing effect on the rest state regime.
The Soret effect on thermosolutal convection within a shal-
low horizontal porous layer subject to a vertical uniform
heat flux was investigated analytically and numerically by
Bahloul et al. [13]. The thresholds for finite-amplitude,
oscillatory and monotonic convection instabilities were
determined in terms of the governing parameters using lin-
ear and nonlinear stability analyses. The existence of sub-
critical convection was predicted for negative values of
the Soret parameter. A similar problem was studied by
Bourich et al. [14] by performing a comparative study for
the limiting cases, which considered Darcy porous and
clear fluid media. A closed form analytical solution for a
shallow enclosure was derived on the basis of the parallel
flow approximation and the onset of overstabilities was
predicted using a linear stability analysis. An appropriate
normalization for the Rayleigh number was used to dem-
onstrate that the flow behavior was similar to that pre-
dicted by the parallel flow assumption for any aspect
ratio of the enclosure. The same authors [15] analytically
and numerically investigated the Soret effect on thermosol-
utal convection induced in a horizontal Darcy porous layer
subject to constant heat and mass fluxes. The thresholds for
the onset of supercritical and subcritical convection were
predicted explicitly as functions of the governing parame-
ters. They demonstrated that there existed combinations
of the governing parameters for which the Soret effect
imposed a vertical non-linear stratification of the concen-
tration field, even for a convective regime, and that a rever-
sal horizontal concentration gradient was also possible.
Ryskin et al. [16] studied the Soret effect on thermo-convec-
tion in a horizontal infinite layer of binary liquid mixtures
with weak concentration diffusivity and large separation
numbers. By considering the classical Rayleigh Bénard
problem, they showed that both linear and nonlinear con-
vective behaviors were significantly altered by the concen-
tration field as compared to single-component systems.
Delahaye et al. [17] analytically and numerically investi-
gated the Soret effect on convection in a horizontal fluid
layer with a free upper surface. The layer was heated from
below, cooled from above, and all its boundaries were
impermeable to mass transfer. The critical Rayleigh num-
bers for the onset of supercritical and subcritical convec-
tion were predicted in terms of the governing parameters
of the problem. The effect of a shear stress applied on the
free upper boundary of a horizontal fluid layer of a binary
mixture with a Soret contribution was studied both analyt-
ically and numerically by Mahidjiba et al. [18]. The bound-
aries of the system were impermeable to mass transfer and
subjected to uniform heat fluxes. The occurrence of multi-
ple steady-state solutions was demonstrated for given sets
of the control parameters. Ouriemi et al. [19] studied ana-
lytically and numerically thermo-diffusion in an inclined
shallow cavity filled with a binary fluid. Newmann bound-
ary conditions for temperature are applied to the long side
walls of the enclosure, while the two short ones are
assumed to be impermeable and insulated. Supercritical
and subcritical convection is predicted in the case of a hor-
izontal layer. The existence of ‘‘natural” and ‘‘antinatural”
flows is also demonstrated by these authors for u > 0:
Charrier-Mojtabi et al. [20] investigated thermosolutal nat-
ural convection with Soret effect under the simultaneous
action of vibrational and gravitational accelerations in a
porous cavity saturated by a binary mixture. The problem
was examined for different aspect ratios with various direc-
tions of vibration. It is concluded that, for both the station-
ary and the Hopf bifurcations, the vertical vibration has a
stabilizing effect while the horizontal vibration has a desta-
bilizing effect on the onset of convection.

The object of the present paper consists of predicting the
onset of double-diffusive natural convection flows devel-
oped in a horizontal porous layer subject to uniform fluxes
of heat and mass on its long sides. Attention is focused on
the situation where the lateral imposed heating flux is bal-
anced by the horizontally induced Soret mass flux which
leads to an equilibrium state (motionless state) that
becomes unstable under certain conditions. To examine
the induced flow behavior, finite amplitude solutions of
the full governing equations were obtained analytically,
using the parallel flow approach, and numerically using a
finite difference method. The present thermo-diffusion
problem is found to exhibit a rich variety of different bifur-
cation phenomena.

2. Mathematical formulation

The configuration considered in this study, sketched in
Fig. 1, is a two-dimensional horizontal porous layer of
length L0 and height H0. The origin of the coordinate system
(x0 is the horizontal axis and y0 is the vertical axis opposing
gravity) is taken at the geometric center of the cavity. The
long horizontal walls of the cavity are subject to uniform



Fig. 1. Schematic diagram of the studied configuration.
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fluxes of heat, q0, and mass j0, while its short walls are imper-
meable to mass transfer and exposed to a constant heat flux
of intensity aq0. The porous medium is homogeneous and
isotropic and the inertia effects are neglected by assuming
low Reynolds flows. The binary solution that saturates
the porous medium is modeled as a Boussinesq incompress-
ible fluid whose density varies linearly with the temperature
and concentration ðq ¼ q0½1� bTðT 0 � T 00Þ � bSðS0 � S00Þ�Þ.
The variations of the latter in the medium are assumed
small enough for the other physical properties to remain
constant.

Using the Darcy model and taking into account the
Soret effect, the governing equations are written as follows:

r2W ¼ �RT

oT
ox
þ N

oS
ox

� �
ð1Þ

r2T ¼ oT
ot
þ oðuT Þ

ox
þ oðvT Þ

oy
ð2Þ

1

Le
ðr2S þMr2T Þ ¼ e

oS
ot
þ oðuSÞ

ox
þ oðvSÞ

oy
ð3Þ

u ¼ oW
oy

; v ¼ � oW
ox

ð4Þ

where W, T and S are the dimensionless stream function,
temperature and solute concentration, respectively. The
boundary conditions associated to the problem are

W ¼ 0;
oT
ox
¼ �a;

oS
ox
¼ aM ; for x ¼ �Ar

2
ð5Þ

W ¼ 0;
oT
oy
¼ �1;

oS
oy
¼ �1þM ; for y ¼ � 1

2
ð6Þ

The above equations show that the steady state solutions of
the present problem are governed by six dimensionless
parameters, namely, the thermal Rayleigh number, RT;
the buoyancy ratio, N; the Lewis number, Le; the Soret
parameter, M; the ratio of horizontal to vertical heat
fluxes, a; and the enclosure aspect ratio, Ar. They are
defined as follows:

RT ¼
gbTKDT 0H 0

am
; Le ¼ a

D
; N ¼ bSDS0

bTDT 0
;

M ¼ D � S0iDT 0

DDS0
; Ar ¼

L0

H 0
ð7Þ

The use of the Soret parameter, M, makes it possible to
reproduce the results that can be obtained in the absence
of the Soret effect by setting M ¼ 0. The present normal-
ization is somewhat similar to that used by Alex and Patil
[10].

The heat and solute transfer rates across the layer are
characterized by the Nusselt and Sherwood numbers,
which are defined as

Nu ¼ 1

½T ð0;�1=2Þ � T ð0; 1=2Þ� ð8Þ

Sh ¼ 1

½Sð0;�1=2Þ � Sð0; 1=2Þ� ð9Þ
3. Numerical solution

The numerical solution of the full governing equations
was obtained using a second-order finite-difference scheme.
The temperature and concentration equations, Eqs. (2) and
(3), were solved iteratively using the alternate direction
implicit method. Nodal values of the stream function were
obtained from Eq. (1) via a point successive-over-relaxa-
tion method. Details concerning the validation of the pres-
ent code in the absence of the Soret effect were reported in
Bourich et al. [21]. The present numerical code was success-
fully used by Bourich et al. [12,13] in the presence of the
Soret effect, and it was validated by comparing the results
with an exact analytical solution developed for a horizontal
porous layer of infinite extent. A grid size of 301� 61 was
used for the range of the governing parameters considered
in the present study. This grid size produces good agree-
ment between the numerical and analytical results. A non
uniform grid was used in the horizontal direction for large
aspect ratio enclosures to capture the flow details in the end
regions.
4. Analytical solution

The analytical solution was developed for steady-state
flows using a parallel flow approximation, which leads to
the following simplifications:

Wðx; yÞ ¼ WðyÞ; T ðx; yÞ ¼ CTxþ hTðyÞ; and

Sðx; yÞ ¼ CSxþ hSðyÞ

where CT and CS are unknown constant temperature and
solute concentration gradients, respectively, in the horizon-
tal direction. Using the above approximations, the govern-
ing Eqs. (1)–(3) may be reduced to the following ordinary
differential equations:

d2W
dy2
¼ �RTðCT þNCSÞ ð10Þ

d2hT

dy2
¼ CT

dW
dy

ð11Þ

d2hS

dy2
¼ LeCS

dW
dy

ð12Þ
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The boundary conditions on the horizontal walls y ¼ � 1
2

� �
become

W ¼ 0;
ohT

oy
¼ �1 and

ohS

oy
¼ �1þM ð13Þ

The constants CT and CS were determined by performing a
global balance of energy and solute transfer across any
transversal section of the layer (Trevisan and Bejan [22]).
These balances lead to the following integrals:Z 1

2

�1
2

uT � oT
ox

� �
dy ¼ a ð14Þ

Z 1
2

�1
2

uS � 1

Le
oS
ox
þM

oT
ox

� �� �
dy ¼ 0 ð15Þ

The solutions of Eqs. (10)–(12), satisfying conditions (13)
were obtained as follows:

WðyÞ ¼ W0ð1� 4y2Þ ð16Þ

T ðx; yÞ ¼ CTx� y � 4W0CT

y3

3
� y

4

� �
ð17Þ

Sðx; yÞ ¼ CSxþ ðM � 1Þy � 4W0ðLeCS þ CTÞ
y3

3
� y

4

� �
ð18Þ

where W0 is the value of the stream function at the center of
the porous layer defined by

W0 ¼
RT

8
ðCT þ NCSÞ ð19Þ

Substituting Eqs. (17) and (18) into Eqs. (8) and (9), the
analytical expressions of Nusselt and Sherwood numbers
may be given by

Nu ¼ 3

3� 2CTW0

ð20Þ

Sh ¼ � 3

3ðM � 1Þ þ 2W0ðLeCS �MCTÞ
ð21Þ

where

CT ¼
�5ð3a� 2W0Þ

15þ 8W2
0

ð22Þ

CS ¼
�10LeW0ðM � 1Þ þMCT ð8LeW2

0 � 15Þ
15þ 8Le2W2

0

ð23Þ

Substituting Eqs. (22) and (23) into Eq. (19) yields the
following equation for W0:

W5
0 þ AW3

0 þ BW2
0 þ CW0 þ D ¼ 0 ð24Þ

with

A ¼ 80d½12ðLe2 þ 1Þ � RTLeðN þ LeÞ�;

B ¼ 120daRTLeðLe� uÞ;

C ¼ �150dRT½ðNLeþ 1Þ þ uðLeþ 1Þ� þ 1800d;

D ¼ 225daRTð1þ uÞ

8>>>>><
>>>>>:
where d ¼ 1

512Le2 and u ¼ �MN .
For given values of RT, Le, M, N and a, the above tran-
scendental equation can be solved analytically, or numeri-
cally using a Newton–Raphson technique. The present
study focuses on a special case for which the rest state
ðW0 ¼ 0Þ is a possible solution for the governing Eqs.
(1)–(4). From the latter, it can be demonstrated that the
rest state is possible if and only if MN ¼ 1, or when the
effect of the imposed heat flux on the vertical boundaries
is entirely balanced by the induced Soret mass flux. This
equilibrium state cannot be realized in the absence of the
Soret effect (i.e., M ¼ 0). For this particular case, the
parameter D of Eq. (24) becomes null. The four solutions
of Eq. (24), for finite amplitude convection, are obtained
analytically as follows:

W0 ¼
�A1 �

ffiffiffiffiffiffi
D1

p

2
for D1 P 0 and

W0 ¼
A1 �

ffiffiffiffiffiffi
D2

p

2
for D2 P 0

where D1 ¼ A2
1 � 4B1 and D2 ¼ A2

1 � 4C1. The other con-
stants are

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E � A
p

; B1 ¼
1

2
Aþ A2

1 �
B
A1

� �
and

C1 ¼
1

2
Aþ A2

1 þ
B
A1

� �
;

E ¼ U 1

jU 1j
ðjU 1jÞ

1
3 þ V 1

jV 1j
ðjV 1jÞ

1
3 � a0

3
if D > 0

and

E ¼MaxðE1;E2;E3Þ if D 6 0

where

U 1 ¼ �
q
2
þ

ffiffiffiffi
D
p

; V 1 ¼ �
q
2
�

ffiffiffiffi
D
p

;

D ¼ p
3

	 
3

þ q
2

	 
2

; p ¼ b� a02

3
;

q ¼ 2

27
a03 � a0b

3
þ c; a0 ¼ �A;

b ¼ �4C; c ¼ 4AC � B2;

E1 ¼ 2

ffiffiffiffiffiffiffi
�p
3

r
cos

h0

3

� �
� a0

3
;

E2 ¼ 2

ffiffiffiffiffiffiffi
�p
3

r
cos

h0 þ 2p
3

� �
� a0

3
;

E3 ¼ 2

ffiffiffiffiffiffiffi
�p
3

r
cos

h0 þ 4p
3

� �
� a0

3

and

h0 ¼ arcos
3q
2p

ffiffiffiffiffiffiffi
�3

p

s !

Recall that, in the absence of mass transfer, lateral heat-
ing makes the system unconditionally unstable and convec-
tion exists for any RT > 0. In the forgoing analysis, the
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buoyancy ratio N is substituted by M� ¼ M�1, and the
problem becomes governed by four parameters, which
are RT, Le, M* and a.
Fig. 3. Regions corresponding to different modes of convection for RT ¼
50 in the plane (a) ðLe–M�Þ for a ¼ 0:5 and (b) (Le–a) for Le ¼ 5.
5. Results and discussion

For a shallow enclosure, the parallel flow solution given
by Eq. (24) shows that a supercritical bifurcation occurs at
Rayleigh number given by

Rsup
TC ¼

12

LeðM� � 1Þ

The expression of Rsup
TC shows that this bifurcation is possi-

ble only for 0 < M < 1. The mathematical solution of Eq.
(24) also shows that two types of subcritical bifurcations
are possible. The first one occurs at Rsub1

TC ðD1 P 0Þ, while
the second one, when it exists, appears at Rsub2

TC ðD2 P 0Þ:
Note that supercritical bifurcation is always preceded by
one subcritical bifurcation. In the absence of the lateral
heating, it has been demonstrated [15] that there are situa-
tions where only supercritical convection is possible. The
variations of Rsub1

TC , Rsub2
TC and Rsup

TC with M* are presented
in Fig. 2 for Le ¼ 7 and a ¼ 0:5. This figure shows that
supercritical and subcritical bifurcations are possible for
M� > 1 (with Rsup

TC > Rsub1
TC Þ. In the range 1 < M�

6 1:98,
two subcritical bifurcations and a supercritical one exist,
but the latter disappears for M� < 1. In the case of a 6¼ 0,
it is to note that the supercritical bifurcation leads to the
disappearance of the clockwise unstable flow in favor of
the counter-clockwise one (or the inverse) when M* is var-
ied around the supercritical point (see Fig. 4a). In the range
�7:6 < M� < �7, only one subcritical bifurcation persists
and no parallel flow solution is possible for M� < �7:6.
On the basis of these observations, the M*–Le plane can
be divided into five regions with specific behaviors
(Fig. 3a). These regions are separated by curves which
-10 -5 0 5

0.1

1

10

102

103

104

105

RT

sup
TCR1sub

TCR

2sub
TCR

D
TCR

50R TC =

Fig. 2. Stability diagram of RT versus M* for Le ¼ 7 and a ¼ 0:5.
depend on the parameter a. Region (I) is defined by
M� P M1 ¼ ð1� LeÞ þ ð1þ LeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð6=5Þa2

p� �
2. In this

region, when M* is close to M�
1, two subcritical bifurcations

and a supercritical one are obtained at RT ¼ Rsub1
TC , Rsub2

TC and
Rsup

TC , respectively, which leads to four convective solutions
over a given range of RT. However, there exists a threshold
of RT, RD

TC, above which two of these solutions disappear.
The evolution of RD

TC with M* is illustrated in Fig. 2 where
it is seen that it tends towards infinity at some point corre-
sponding to the passage from region (I) to region (II). For
values of M* far from the limit M�

1, one of the two subcrit-
ical bifurcations disappears and two solutions are obtained
regardless of RT. In the second region (II), defined by
M�

1 P M� > 1, two subcritical bifurcations and a supercrit-
ical one are obtained, and the corresponding four convec-
tive solutions persist for any RT greater than Rsub2

TC . For
the third region (III), corresponding to 1 > M� P �Le,
two subcritical bifurcations (leading to four solutions)
persist, but the supercritical one disappears. In the fourth
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region (IV), defined by �Le > M� P ð1� LeÞ � ð1þb
LeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð6=5Þa2

p
c=2, only one subcritical bifurcation (two

convective solutions) exists. Finally, in the last region (V),
defined by M� < ð1� LeÞ � ð1þ LeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð6=5Þa2

p� �
=2,

the parallel flow solution does not exist, regardless of RT.
These regions are also presented in the M�–a plane for
Le ¼ 5, as shown in Fig. 3b. For the latter case, the thick-
ness of the third region is independent of the parameter a

when Le is fixed.
The effect of M* on the fluid flow and heat and mass

transfer characteristics is illustrated in Fig. 4a–c for
RT ¼ 50; Le ¼ 7 and a ¼ 0 (absence of the lateral heating)
and 0.5. The curve of W0, presented in Fig. 4a, exhibits a
symmetrical behavior for a ¼ 0, with two subcritical bifur-
cations starting at the same value of M� ¼ �1:314. This
symmetry is destroyed in the presence of lateral heating,
leading to imperfection bifurcation. As a consequence,
one of the two subcritical bifurcations is retarded (occurs
at M� � 0:87) and the other one starts earlier (occurs at
M� � �3:5). These values of M* can also be deduced from
Fig. 2 as intersection points between the line RT ¼ 50 and
the bifurcation curves. Fig. 4a displays also the onset point
for subcritical convection beyond which the rest state solu-
tion W0 ¼ 0 becomes unstable to finite amplitude perturba-
tions and the onset point for supercritical convection
beyond which the rest state is unstable to infinitesimal per-
turbations. The dashed lines are used for the unstable
branches of the curves; which could not be obtained
numerically. By increasing M* from �3.5, the dashed
branch crosses the line W0 ¼ 0 at the point M� ffi 1 where
the supercritical bifurcation starts. At sufficiently large
M*, only the two stable branches persist. Fig. 4a also indi-
cates that there is a range of M* over which four parallel
flow solutions are possible. The effect of M* on Nu, pre-
sented in Fig. 4b, indicates that Nu is considerably reduced
by the flow rotating in the counter-clockwise direction.
This flow tends to transport heat from the lateral heated
wall towards the bottom heated wall. The variations of
Sh with M*, presented in Fig. 4c, are characterized by a
special behavior. For a given value of M*, all the obtained
solutions lead almost to the same Sh. Furthermore, there is
a value of M* for which Sh tends towards infinity, indicat-
ing that the concentration difference between the top and
bottom walls of the porous layer is zero for a given vertical
section. This behavior was inspected more closely through
the concentration profile obtained in such a situation for
Le ¼ 7;M� ¼ 0:82; a ¼ 0:5 and RT ¼ 50 (results not pre-
sented). It was found that, globally, the concentration in
the lower part of the porous layer is higher than that
in the upper part, even though the horizontal boundaries
have the same concentration for this case. Also note that
the Sh values presented in Fig. 4c can be negative or posi-
tive as the thermal diffusion may transport the solute
upward or downward depending on the sign of M*.

The effect of the flow rotation (clockwise and counter-
clockwise) on the velocity, temperature and concentration
fields, is illustrated in Fig. 5a and b (iso-contours) and
Fig. 6a–c (mid-width profiles) for RT ¼ 50; Le ¼ 7; a ¼ 0:5
and M� ¼ 3. These flows correspond to the same set of
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governing parameters and the numerical solutions were
obtained using the parallel flow solutions as initial condi-
tions. The streamlines of Fig. 5a (CF) and b (CCF) shows
clearly that the flow is parallel to the horizontal boundaries
for both solutions. The convection effect on the tempera-
ture fields is more pronounced in the case of the clockwise
solution. However, the concentration fields remain qualita-
tively similar if we accept that the deformation of the iso-
contours follows the direction of the flow rotation. The
mid-width profiles of temperature, concentration and
velocity, presented in Fig. 6a–c, indicate that both flows
induce the same profile for concentration but different pro-
files for temperature and velocity. These figures show also
that the analytical solution is well reproduced numerically.

5.1. Effect of RT for different regions

The effect of the RT on the fluid flow and heat and mass
transfer characteristics depends on the governing parame-
ters ranges that are described by the different regions shown
in Fig. 3. Fig. 7a–c shows the evolution of the flow intensity,
W0; the Nusselt number, Nu; and the Sherwood Number,
Sh; with RT for a ¼ 0:5 and various values of (Le, M*).
All the curves presented in these graphs correspond to par-
allel flow solutions. The numerical solution of the full gov-
erning equations is in good agreement with the analytical
model. For ðLe;M�Þ ¼ ð7; 2:5Þ, only one subcritical bifurca-
tion appears at Rsub

TC ¼ 1:09, with two solutions engendering
clockwise rotating cells. For RT > Rsup

TC ¼ 1:143; the flow
circulation corresponding to one of these two solutions
becomes counter-clockwise. The intensity of the latter (i.e.
jW0j) decreases slightly between Rsub

TC and Rsup
TC . For

ðLe;M�Þ ¼ ð7; 1:5Þ, a first subcritical bifurcation manifests
at Rsub1

TC ¼ 2:5034, marking the onset of two clockwise flows.
By increasing RT up to Rsup

TC ¼ 3:43, one of these flow solu-
tions becomes counter-clockwise. The intensity of the clock-
wise flow increases monotonously with RT while the
intensity of the counterclockwise flow presents an asymp-
totic behavior. The second subcritical bifurcation occurs
at Rsub2

TC ¼ 36:7 and induces two solutions characterized by
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counter-clockwise flows for any RT > Rsub2
TC . For the last

value (5,�0.1) of ðLe;M�Þ, the behavior is qualitatively sim-
ilar to that described for (7, 1.5) but without any supercrit-
ical bifurcation.

The effect of the convective bifurcation on the Nusselt
number is presented in Fig. 7b. For ðLe;M�Þ ¼ ð7; 2:5Þ,
characterized by a single subcritical bifurcation, the two
obtained solutions lead to different behaviors for the Nus-
selt number. For the solution where the flow always
remains clockwise, Nu increases and reaches a maximum
value at RT � 130, then decreases towards an asymptotic
limit (reached at RT > 104Þ. For the solution that changes
its flow rotating direction, Nu goes through a minimum
at RT � 5 and then increases afterwards to an asymptotic
limit of the first solution. Two bifurcations are obtained
for ðLe;M�Þ ¼ ð7; 1:5Þ: The first one yields two clockwise
flows. One of these (continuous line) has a behavior similar
to that engendered by the clockwise flow corresponding to
ðLe;M�Þ ¼ ð7; 2:5Þ; the other (dashed line) is characterized
by a decrease of Nu with RT. The second bifurcation
induces lower Nusselt numbers; however, the stable
branches of both solutions lead to the same asymptotic
limit. Generally, the Nusselt number induced by the differ-
ent solutions, corresponding to different regions, has an
asymptotic behavior for high values of RT. Note that there
are situations for which Nu < 1 ðNu ¼ 1 for the rest state).
This phenomenon results from the effect of the lateral heat-
ing, which heats the fluid coming from the vicinity of the
cold wall. Fig. 7c shows the evolution of Sh with RT for
the different obtained solutions. The convective solutions
corresponding to a given combination of (Le, M*, a, RT)
induce nearly the same Sherwood number. The evolution
of Sh is characterized by an increase or a decrease with
RT, depending on the combination (Le, M*), and presents
an asymptotic behavior at large RT (reached at RT > 103Þ.

5.2. Effect of the lateral heating on the critical parameters

The influence of the parameter a on the subcritical and
supercritical Rayleigh numbers and on the critical value
of W0 (W0cr denotes the flow intensity at the onset of the
subcritical convection) is illustrated in Fig. 8a and b and
9a and b for ðLe;M�Þ ¼ ð3; 2Þ and (1.5, 1.5), respectively.
For the combination ðLe;M�Þ ¼ ð3; 2Þ, where one subcriti-
cal and one supercritical bifurcations are obtained, Fig. 8a
shows that Rsup

TC is independent of the lateral heating in
accordance with the relation Rsup

TC ¼ 12=½LeðM� � 1Þ�. An
increase of a induces a reduction of Rsub

TC , which leads to a
rest state that is more and more unstable. Note that for
a ¼ 0, Rsub

TC ¼ Rsup
TC ¼ 4 for this case; this behavior is charac-

teristic of a region where only one subcritical bifurcation
exists. Fig. 8b indicates a monotonic increase of jW0crj with
a. Quantitatively, jW0crj passes from 0 to 0.28 when the
value of a increases from 0 to 1. For the combination
ðLe;NÞ ¼ ð1:5; 1:5Þ, for which two subcritical bifurcations
and a supercritical one exist, Fig. 9a and b shows the effect
of a on Rsup

TC , Rsub1
TC , Rsub2

TC , jW1
0crj (W1

0cr ¼ W0cr at the onset of
the clockwise flow) and W2

0cr (W2
0cr ¼ W0cr at the onset of the

counter-clockwise flow). The obtained values of the stream
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function at the onset of the subcritical convective solutions
are predicted by the parallel flow approximation. Here,
Rsub1

TC ¼ Rsub2
TC and jW1

0crj ¼ W2
0cr in the absence of lateral

heating (a ¼ 0). The increase of a leads to a decrease/
(increase) of Rsub1

TC and jW1
0crj=ðRsub2

TC and jW2
0crjÞ. More

precisely, when the value of a increases from 0 to 1,
Rsub1

TC /(Rsub2
TC Þ decreases/(increases) from 12.44/(12.44) to

5.96/(50.13) and jW1
0crj/(W2

0crÞ passes from 0.77/(0.77) to
0.67/(2.01). Therefore the lateral heating promotes/(delays)
the onset of the sub-critical convection corresponding to
the CF/(CCF).
5.3. Combined effect of a and RT

The influence of lateral heating on the fluid flow and
heat and mass transfer characteristics is analyzed for the
cases ðLe; M�Þ ¼ ð3; 2Þ and (1.5, 1.5), corresponding to a
single subcritical bifurcation and two subcritical bifurca-
tions, respectively. Fig. 10a–c shows the variations of W0,
Nu and Sh with RT for ðLe; M�Þ ¼ ð3; 2Þ and various val-
ues of a. For a ¼ 0, only supercritical convection exists,
which leads to two symmetrical convective solutions start-
ing from the rest state (W0 ¼ 0, Nu ¼ 1 and Sh ¼ 2) at
RT ¼ Rsup

TC ¼ 4. By increasing a, a subcritical bifurcation is
triggered earlier than the supercritical one at a given value
of RT ¼ Rsub

TC < Rsup
TC . In the range Rsub

TC < RT < Rsup
TC , two

convective solutions rotating in the same direction are
obtained, while for RT > Rsup

TC , the flow corresponding to
one of these two solutions changes its rotation direction.
The symmetry displayed by the curve of W0 in the case of
a ¼ 0 is destroyed in the presence of lateral heating
(a > 0). Lateral heating enhances the flow intensity of the
CF solution and the corresponding Nusselt number; this
tendency is reversed in the case of counter-clockwise flow.
The variations of Sh with RT, presented in Fig. 10c, are
somewhat surprising since Sh remains insensitive to the
variation of a and to the flow direction.

The case of ðLe;M�Þ ¼ ð1:5; 1:5Þ is illustrated in
Fig. 11a–c. For a given value of a, this combination of
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(Le, M*) is characterized by the presence of two subcritical
bifurcations corresponding to two critical values of the
Rayleigh number: Rsub1
TC (corresponding to the onset of the

subcritical CF) and Rsub2
TC (corresponding to the onset of
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the subcritical CCF). For a ¼ 0; the two subcritical flows
start at the same critical value of RTðRsub1

TC ¼ Rsub2
TC ¼

12:44Þ and the presence of the lateral heating precipi-
tates/(retards) the appearance of the CF/(CCF). In the case
of the stable solutions (represented by continuous lines),
the lateral heating enhances/(reduces) the intensity and
the Nusselt number resulting from the CF/(CCF). How-
ever, once again, the Sherwood number is independent of
the parameter a and of the flow direction.
5.4. Effect of a on the multiplicity of solutions

The effect of lateral heating on the multiplicity of solu-
tions is examined for a combination of (RT;M�; LeÞ ¼
ð15; 1:5; 1:5Þ, leading to four different solutions in the
absence of lateral heating. The variations of W0 with a, pre-
sented in Fig. 12a, show that four convective solutions are
possible for small values of a, characterized by two CF
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(with intensities of W1
0C and W2

0CÞ and two CCF solutions
(with intensities of W1

0T and W2
0TÞ. By increasing a from 0

(for which W1
0C ¼ �W1

0T and W2
0C ¼ �W2

0TÞ to 1, the inten-
sity W1

0T of the stable branch of the CCF decreases while
the intensity W2

0T of the unstable branch (probably not a
physical solution) increases. Above the critical value
acr � 0:17; these two CCF solutions become unstable due
to lateral heating, and revert their flow circulation to CF.
The lateral heating induces an increase of jW1

0Cj and a
decrease of jW2

0Cj (probably not a physical solution). In
Fig. 12b, which shows the variations of Nu induced by
the different solutions with a, the greatest heat transfer is
engendered by the stable CF. Sh curves are not presented
here since the obtained Sh values were constant
(Sh ¼ 2:84) and independent of a.

6. Conclusions

Double diffusive natural convection in a horizontal
Darcy porous layer subject to uniform fluxes of heat and
mass was studied analytically (parallel flow approximation)
and numerically in the presence of the Soret effect. Atten-
tion was focused on the case where the Soret separation
ratio u ¼ �MN ¼ �1; for which the effect of lateral heat-
ing was balanced by the Soret effect. For this case, the rest
state was a solution of the problem. The critical conditions
corresponding to the onset of subcritical and supercritical
bifurcations for the parallel flow solution were determined
analytically. The plane Le–M* (i.e., M� ¼ 1=MÞ could be
divided into five regions with specific behaviors. Depending
on the considered region, up to two subcritical bifurcations
were possible with or without supercritical bifurcation.
When both subcritical bifurcations existed, at least one of
them (corresponding to clockwise flow) started earlier than
the supercritical bifurcation. Also, the existence of one
region characterized by negative values of M*, where a par-
allel flow solution was not possible, was delineated. The
surprising finding of the study was the insensitivity of the
Sherwood number vis-à-vis the lateral heating and the
multiplicity of solutions in spite of the fact that the latter
had a considerable effect on the flow intensity and Nusselt
number.
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